Professional Course

Linear Algebra IV: Orthogonality & Symmetric Matrices and the SVD

edX, Online
3 weeks
199 USD
Next course start
Start anytime See details
Self-paced Online
3 weeks
199 USD
Next course start
Start anytime See details
Self-paced Online
Visit this course's homepage on the provider's site to learn more or book!

Course description

Linear Algebra IV: Orthogonality & Symmetric Matrices and the SVD

In the first part of this course you will explore methods to compute an approximate solution to an inconsistent system of equations that have no solutions. Our overall approach is to center our algorithms on the concept of distance. To this end, you will first tackle the ideas of distance and orthogonality in a vector space. You will then apply orthogonality to identify the point within a subspace that is nearest to a point outside of it. This has a central role in the understanding of solutions to inconsistent systems. By taking the subspace to be the column space of a matrix, you will develop a method for producing approximate (“least-squares”) solutions for inconsistent systems.

You will then explore another application of orthogonal projections: creating a matrix factorization widely used in practical applications of linear algebra. The remaining sections examine some of the many least-squares problems that arise in applications, including the least squares procedure with more general polynomials and functions.

This course then turns to symmetric matrices. arise more often in applications, in one way or another, than any other major class of matrices. You will construct the diagonalization of a symmetric matrix, which gives a basis for the remainder of the course.

Upcoming start dates

1 start date available

Start anytime

  • Self-paced Online
  • Online
  • English

Who should attend?



Course delivery details

This course is offered through The Georgia Institute of Technology, a partner institute of EdX.

5-6 hours per week


  • Verified Track -$199
  • Audit Track - Free

Certification / Credits

What you'll learn

Upon completion of this course, learners will be able to:

  • Compute dot product of two vectors, length of a vector, distance between points, and angles between vectors
  • Apply theorems related to orthogonal complements, and their relationships to Row and Nullspace, to characterize vectors and linear systems
  • Compute orthogonal projections and distances to express a vector as a linear combination of orthogonal vectors, construct vector approximations using projections, and characterize bases for subspaces, and construct orthonormal bases
  • Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis
  • Construct the QR factorization of a matrix
  • Characterize properties of a matrix using its QR decomposition
  • Compute general solutions and least squares errors to least squares problems using the normalequations and the QR decomposition
  • Apply least-squares and multiple regression to construct a linear model from a set of datapoints
  • Apply least-squares to fit polynomials and other curves to data
  • Construct an orthogonal diagonalization of a symmetric matrix
  • Construct a spectral decomposition of a matrix

Contact this provider

Contact course provider

Fill out your details to find out more about Linear Algebra IV: Orthogonality & Symmetric Matrices and the SVD.

  Contact the provider

  Get more information

  Register your interest

Country *

reCAPTCHA logo This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
141 Portland Street
02139 Cambridge Massachusetts


edX For Business helps leading companies upskill their labor forces by making the world’s greatest educational resources available to learners across a wide variety of in-demand fields. edX For Business delivers high-quality corporate eLearning to train and engage your employees...

Read more and show all training delivered by this supplier